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Summary 
 
 
 
When a rocket leaves the launch guide, it is subject to a step in the lateral wind velocity that causes the rocket to turn 
or rotate into the direction of the oncoming wind.  Conventional wisdom has it that the greater the distance between 
the center of pressure and center of gravity, also known as the stability margin, the more a rocket will rotate into the 
wind due to the longer moment arm between the center of pressure and center of gravity.  Using a 2-dimensional 
nonlinear flight model and a series sensitivity analysis, it is shown what impact various rocket design parameters 
have on how far the rocket rotates.   It is also shown that there is not a direct correlation between the stability margin 
and how far the rocket rotates.  That is, being “over stable” is not necessarily an indication a rocket will be more 
susceptible to rotating into the wind.  It is shown having a higher thrust to weight ratio has the biggest impact on 
minimizing the rotation into the wind.  
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1 Introduction 

1.1 Objective and Approach 

 

As a rocket leaves the launch guide, it is subject to step in the velocity of the wind, creating a normal force that 

causes the rocket to rotate into the direction of the oncoming wind.  This paper looks at the magnitude of the angle 

of rotation in response to the step in wind velocity.  Because the initial step in wind velocity is large relative to the 

velocity of the rocket as it leaves the launch guide, and because the resulting rotation of the rocket takes place during 

a large change in the velocity of the rocket as it accelerates under the thrust of the motor, a linearized rotational 

model1 is not valid, so the complete nonlinear flight model2 must be used to analyze the rocket’s rotation.  Small 

perturbations in wind velocity can impact the rotation of the rocket throughout its flight but it is the large step in 

relative velocity as the rocket leaves the launch guide that drives the flight trajectory of the rocket. 

 

 

Figure 1-1  Rotation into the wind 

 

1 (Fetter T. B., 2024, pp. 25-33) 
2 See Appendix 3 – 2-D Flight Model 
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The term “over stable” is often used to describe a rocket with the stability margin much greater than one3.   The 

stability margin in this case is measured by the distance between the center pressure and the center of gravity of the 

rocket.  It is believed that a rocket that is over stable would be more prone to rotating further in response to a wind 

perturbation because of a larger moment arm between the center of pressure and center of gravity.  And with an 

increase in the flight path angle, the expected maximum altitude would decrease.  This paper includes a look at the 

relationship between the stability margin and the magnitude of the rocket’s rotation into the wind and the impact on 

the maximum altitude of the rocket. 

 

 

1.2 Prior Work   

 

The rotational dynamics and flight trajectory model used for this analysis is based primarily on the material in the 

book Topics in Advanced Model Rocketry4,  in particular the chapter A Unified Approach to Aerodynamic Stability, 

by Gordon K. Mandell, and the chapter Elements of Trajectory Analysis by George J. Caporaso. 

 

Mandell uses Barrowman’s static stability equations5 to determine the rotational forces on the rocket.   Barrowman’s 

work is based on NACA research on determining the stability of aerodynamically stabilized sounding rockets.  

Barrowman simplified the methods for the set of flight conditions that apply to model rockets.  He developed a 

unified method for predicting the static stability of model rockets by calculating the aerodynamic center of pressure.  

This work was presented at NARAM 86 and published in TIR-33 Calculating the Center of Pressure of a Model 

Rocket7, and TIR-30 Stability of a Model Rocket in Flight8.  Barrowman also derived the rotational damping moment 

term that is used in the rotational dynamics equation9.   

 

Some of the tools and models used in this paper are based on prior work done by the author to model and visualize a 

rocket’s flight in 3-dimensional space.  Those same tools were also used to visualize the measured flight data from 

 
3TIR-30 (Barrowman J. , 1970, p. 12) 

4 (Mandell, Caporaso, & Bengen, 1973).   

5 (Barrowman J. S., The Practical Calculation of the Aerodynamic Characteristics of Slender Finned Vehicles, 

Master's Thesis, 1967) 
6 (Barrowman & Barrowman, The Theoretical Prediction of Center of Pressure, NARAM-8, 1966) 

7 (Barrowman J. , 1968) 

8 (Barrowman J. , 1970) 

9 (Barrowman J. S., The Practical Calculation of the Aerodynamic Characteristics of Slender Finned Vehicles, 

Master's Thesis, 1967, p. 40) 
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an RAF Datalogger board.  The modeling is done in Mathcad10, and the flight and attitude visualization is written 

using the Visual Python library in Python.  Examples of this work are available on the authors web site11, but it 

otherwise it has not been published to date. 

 
 
  

 

10 (Mathcad Home Page, n.d.) 
11  (Fetter T. , 2014-2016) 
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2   Modeling the Wind Rotation 

2.1 Rotation Angles 

 

There are five rotational angles of interest.  Figure 2-1 and Figure 2-2 show the definitions of these five angles12.   

 

 

 

 

Figure 2-1 Key rotational angles 

 
12 See Appendix 3 – 2-D Flight Model for a description of the frame of reference axis conventions used in this paper 
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Figure 2-2 Key velocity vectors and angles 

 

 

The angle of the rocket’s rotation, y , as shown in Figure 2-1 describes the rocket’s rotational response to the wind. 

The y notation is used because the rocket is rotating about the implied y-axis which is coming out of the plane of 

the of the figure in a right hand coordinate system.  The angle is measured from the vertical Z-axis, with positive 

angles measuring the counterclockwise distance from the vertical Z-axis.  The first quadrant is the upper left 

quadrant of the graph. 

 

T  is the angle of the oncoming airstream in the first quadrant, and is the input angle to the rotational equation that 

drives the rocket’s rotation.  T is determined by the sum of the negative of X-axis velocity of the rocket plus the 

lateral wind velocity and the negative of the Z-axis velocity of the rocket as shown in Figure 2-2. 

 

CG  is the angle of the motion of the center of gravity of the rocket, which is determined by the X and Z-axis 

velocities of the rocket. 
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at is the angle of attack which is the angle of inclination of the rocket’s z-axis to the direction of the total 

oncoming airstream.   

 

The center of gravity of the rocket can be moving in a direction that is not the same as the direction in which it is 

pointed if there is a lateral wind.    is the angle between the angle of the flight path and the angle in which the 

rocket is pointed.   

 

 

2.2 Rotation Due to Wind at Launch 

 
The complete 2-D flight that is derived in Appendix 3 – 2-D Flight Model, along with the definitions of the forces 

and coefficients,  solves for the state variables of the system, , , , , ,X X Z Z yd v d v   and y , which completely 

describe the state of the system at any point in timeThe inputs to the model are the wind velocity, wv , and the 

thrust of the motor.  Each of the other rotational angles can then be solved as algebraic functions of the state 

variables. 

 

2

2
X

o TX DX LX

d d
m F F F

dt
    

2

2
Z

o TZ DZ LZ o

d d
m F F F m g

dt
     

2

2 1 12L y y y T

d d
I C C C

dtdt
           

 

Figure 2-3 shows the rotation angle of the rocket, y , and the angle of the total oncoming airstream, T , from the 

complete flight model for test rocket TR-1, shown in Section 3.1, with a 10 mph step in wind velocity occurring as 

the rocket leaves the launch guide at 0.0264 seconds and with motor burnout at 1.3 seconds.  T is the input to the 

rotational equation, and y is the output.  The initial step in input angle seen by the rocket as it leaves the launch 

guide is 11.1 degrees.  The rocket then starts its rotation to align itself with the direction of the oncoming total 

airstream.   T  then changes over time due its coupling with the X and Z-axis equations of motion through the lift 

force13 and the rocket velocity.   

 

 

13 See (Fetter T. B., 2024) , Section 2.2,  for a complete description of  the coupling mechanisms between the 

equation in the flight model  
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Figure 2-3  Angle of the total oncoming airstream, T  and the rocket rotation angle, y  

 

 

From Figure 2-1, for small angles of rotation, 

 

 arcsin X w wX
T

T T T

v v vv

v v v


 
  

 
  (2.2-1) 

 

so the total oncoming airstream angle is comprised of two terms, one proportional to the wind velocity, and the other 

proportional to the X-axis velocity.  Figure 2-4 shows each of these terms.  The term due to the wind velocity starts 

out at  because the velocity of the oncoming airstream starts out at 0 when the rocket is first launched, but the 

rocket does not actually see the wind term until is leaves the launch guide at 0.264 seconds into the flight, where the 

rocket, in this case, is traveling at 51 mph.  The combination of the 10 mph wind velocity and the 51 mph forward 

velocity creates an initial oncoming airstream angle of 11.097 deg as seen in Figure 2-4.  The wind term continues to 

decrease as the total airstream velocity increases with the rocket’s acceleration until motor burnout at 1.3 seconds, as 

shown in Figure 2-6.  The airstream velocity then decreases due to the rocket’s deceleration due to gravity, and the 

wind component to the airstream angle slowly increases. 
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Figure 2-4  Terms that comprise the angle of the oncoming airstream 

 

 

 

The second component of the angle of the oncoming airstream, T , is due to the X-axis velocity of the rocket.  

After the rocket starts its rotation, as shown in Figure 2-5 , there is a component of the thrust aligned with the X-

axis, and the rocket starts to accelerate along the X-axis,  as shown in shows Figure 2-6.  Figure 2-5 shows that the 

ratio of the X-axis velocity to the total airstream velocity increases as a step function until it reaches a nearly fixed 

ratio between the two velocities as the rocket completes its initial turn.  The X-axis velocity then tracks the total 

airstream velocity from that point forward.  The time it takes the ratio to reach a fixed value depends on both the 

time it takes the rocket to rotate and the time it takes for the initial acceleration along the X-axis.  
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Figure 2-5  X-axis velocity increases after rocket rotates 

 

 

Figure 2-6  Total airstream velocity and rocket X-axis velocity 

 

 

It is hard to see the actual angle of rotation of the rocket from the ground during its flight because the rocket is a 

long distance from the observer and is moving very rapidly.  The angle of the flight path is more likely what an 

observer on the ground will see as an indication of how far the rocket has turned into the wind as it is clearly 

delineated by the exhaust trail of the motor.  As the rocket rotates into the wind, there is a component of the thrust 

that is aligned with the X-axis, and the rocket starts to accelerate along the X-axis, resulting in a change in the angle 
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of the flight path.  The flight path angle, CG , is the angle of a line tangent to the motion of the center of gravity of 

the rocket and is a measure of the deviation from a vertical flight path at any point along the flight path.  Figure 2-7 

shows that the flight path angle is the ratio of the X-axis velocity to the Z-axis velocity for small flight path angles.   

 

 

Figure 2-7  Angle of the flight path tangent CG  

 

 

Figure 2-8 shows that the total airstream velocity is very close to the Z-axis velocity of the rocket since  

( )Z w Xv v v  .  Therefore 

2 2( )T X w Z Zv v v v v     

and  

 X
CG

T

v

v
   (2.2-2) 

 

which is the X-axis velocity component of the angle of the total oncoming airstream in equation (2.2-1).  Therefore, 

the angle of the oncoming airstream equals the flight path angle plus the ratio of the wind to total velocity 

 

 w
T CG

T

v

v
    (2.2-3) 
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Figure 2-8  Z-axis velocity and total airstream velocity 

 

 

Figure 2-9 shows all the key rotational angles where X Tv v is the flight path angle 

 

 

Figure 2-9  Key rotational angles where the green trace, X
CG

T

v

v
 , the flight path angle 
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The angle of attack is the difference between the angle of the total oncoming airstream and the angle of the rotation 

of the rocket.  The angle of the oncoming airstream is the input that drives the rotational equation, and the rotational 

step response eventually settles to the input angle, T , where the angle of attack, at , goes to zero.  The normal 

force, which causes the rocket to rotate, is proportional to the angle of attack.  At equilibrium, the angle of attack 

and the normal force go to 0, and the rocket stops rotating. 

 

 at T y     (2.2-4) 

y Tt
 


  

0at t
    

 

Figure 2-10 shows that the angle of attack starts at 11.097 deg as the rocket leaves the launch guide and settles to 0 

deg as the rocket reaches equilibrium. 

 

 

 

Figure 2-10  Angle of attack 

 

 

Figure 2-11 shows the angle between the angle of the rocket’s rotation and the angle of the flight path,  .   The 

rocket does not necessarily fly in the direction that it is pointed. 
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 y CG     (2.2-5) 

 

 

 

 

Figure 2-11  The difference angle between the angle of the rocket’s rotation and the angle of the flight path 

 

 

Solving for  as t  and the angle of attack goes to 0, 

 

X
y CG y

T

v

v
        

wX
y Tt

T T

vv

v v
 


    

 w w
t

T Z

v v

v v    (2.2-6) 

 

so the angle between the direction the rocket is pointed and the angle of the flight path converges on the ratio of the 

velocity of the wind and the velocity of the rocket, as shown in  Figure 2-12  
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Figure 2-12   Showing  converges on w T w Zv v v v  

 

Figure 2-13 shows the angles from Figure 2-1 when y T   and 0at  , once the rocket rotation has reached its 

equilibrium value.  Once the angle of attack has gone to zero, there is no longer a normal force that would cause 

further rotation of the rocket.  The direction of the oncoming airstream, Tv , is just the sum of the rockets velocity 

vector plus the oncoming wind.  The difference between the center of gravity vector, CGv , and the oncoming 

airstream vector, with which the rocket is aligned, is the wind vector, wv , and the angle is w T w Zv v v v .  So, the 

rocket flies at an angle which is the ratio of the wind velocity to the forward velocity of the rocket. 
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                   Figure 2-13   Rocket orientation and angles at equilibrium when 0at    

 

 

 

2.3 The Gravity Turn 

 

Figure 2-14 shows the rocket rotation and flight path angles for test rocket TR-1 flying on an H128W in a 10 mph 

wind.  In response to the step in wind velocity as the rocket leaves the launch guide, the rocket rotates 7.58 deg at 

motor burnout at 1.3 sec.  The flight path angle is about 2 degrees less at 5.35 deg at motor burnout.     But after 

motor burnout, both the rocket rotation angle and the flight path angle continue to increase slowly.  That slow 

increase in rotation is due to gravity. 
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Figure 2-14  Rocket rotation and flight path angles 

 

 

Once the rocket’s flight path angle has turned away from vertical, the flight path will continue to turn because of the 

acceleration due to gravity.  Figure 2-15 shows the trajectory for an object with an initial velocity of (0)Xv  and (0)Zv  

for a series of discrete time segments.  In each time segment, the initial horizontal velocity, ( 1)X nv  , remains 

constant if the effect of drag is not included, but the vertical velocity at the start of the each segment, ( 1)Z nv   is 

decreased by g t  from the starting velocity of the previous segment.  As a result, the angle of the flight path 

trajectory, CG , increases with each segment, and trajectory arcs over.   
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Figure 2-15  The gravity turn where ( 1) ( )Z n Z nv v g t     

 

 

In continuous time, the Z-axis velocity can be calculated by 

 

2

2

dv d x
a

dt dt
    

 x X Xd v dt v t     

 x X Xd v dt v t     

 2
(0) (0)

1

2Z Z Zd g dt g t v t d             (2.3-1) 

 

Plotting the Z-axis position, Zd , versus the X-axis position, Xd , produces a parabolic curve due to the 2t  term in

Zd . 
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Figure 2-16  Plot of (2.3-1) for (0) 100Zv mph  and 10Xv mph   

 

 

Figure 2-17 shows the flight trajectory for test rocket TR-1 showing the initial turn due to the step in wind as the 

rocket leaves the launch guide, and the longer term gravity turn.  Once the rocket flight path angle has rotated 90 

degrees, the rocket is no longer gaining altitude, and the peak altitude has been reached.  As the flight path angle 

changes, the rocket continues to rotate so that the rocket aligns itself the direction of the oncoming airstream 

(including the lateral wind velocity), up until the rocket is no longer traveling fast enough to generate a normal force 

strong enough to force the rocket to continue to rotate, and the rocket rotation angle falls behind the flight path angle 

(the two curves crossr).  The motor burn time is a small portion of the upward flight time, so most of the gravity turn 

occurs after motor burnout.     
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Figure 2-17  Flight trajectory angle (green) and rotation angle (black) for test rocket TR-1 for boost and coast 

phases 

 

 

If the rocket never sees a lateral wind, and there is no other rotational perturbation, the rocket will fly straight up to 

apogee.  But once the flight path moves away from vertical, gravity contributes to the continued turn in the flight 

path.   

 

How much does gravity contribute to the magnitude of the initial turn before motor burnout shown in Figure 2-17?  

Figure 2-18 shows the complete 2-D model output with the start of the gravity turn on the left, and the 2-D model 

output with the gravity force in the model set to 0.  The comparison of the two graphs shows how much of the turn is 

due to gravity.  Comparing the magnitude of both the rocket rotation and the flight path angle at motor burnout, this 

shows that a little less than one degree of each turn is due to gravity, so most of the initial step is due to the wind 

perturbation.  The slight droop in the flight path angle in the graph with gravity set to zero is due to the drag force.  

The drag term’s effect is much smaller than that of gravity, and only impacts CG . 
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Figure 2-18  Response of TR-1 to a 10 mph step in wind velocity as the rocket leaves the launch guide (0.27 sec) 

with (left) and without (right) the gravity force 

 

 

2.4 System Equilibrium 

 

For small rotation angles, the input to the rotational equation, T , is the term that provides the coupling between the 

rotational equation and the  X-axis equation of motion14 

wX
T

T T

vv

v v
    

 

At equilibrium, the angle of attack due to the lateral wind goes to zero, the normal force goes to zero, and the rocket 

stops rotating, except for the continuation of the gravity turn 

 

 0at t



  

 

and the rotation of the rocket aligns with the angle of the oncoming airstream 

 

 y Tt
 


  

 
14 (Fetter T. B., 2024, p. 11) 
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Therefore, at equilibrium 

 wX
y t

T T

vv

v v



   (2.4-1) 

 

This equation does not have a unique solution for the outputs of the system, Xv  and y .  For any value of Xv , a 

value of y exists that satisfies the equation, so a closed form solution for the angle of rotation for a given wind 

velocity and motor thrust does not exist.  The final value of the angle of the rocket’s rotation is dependent on the 

final value of the X-axis velocity, and the final value of the rocket’s X-axis velocity is dependent on the final value 

of the rocket’s rotation angle.  The values and time where the system reaches equilibrium is dependent on the rate at 

which the rocket rotates and the rate at which the rocket accelerates along the X-axis.  It takes solving the complete 

system of differential equations to determine what those rates are and what the final equilibrium values are for, Xv  

and y .  As described at the beginning of this paper, the final value to the rocket’s rotation due to the wind 

perturbation cannot be determined as a simplified closed form solution and can only be found by solving the 

complete system of differential equations.   And because the differential equations are nonlinear, this requires a 

numerical solution.   

  

 

2.5 Rotation After Motor Burnout 

 

All the analyses so far have assumed that the step in wind velocity occurs as the rocket leaves the launch guide, 

which is normally where the biggest impact due to the wind occurs because of the relatively slow velocity of the 

rocket as it leaves the launch guide.   But what happens if the wind perturbation occurs later in the flight after motor 

burnout?   To examine this case, it is assumed that there is no wind perturbation as the rocket leaves the launch 

guide, so it is still traveling vertically at motor burnout, shortly after which the wind perturbation occurs. 

 

Figure 2-19 shows the rotational response from the complete model of test rocket TR-1 for a one mile per hour step 

in wind velocity that occurs at 1.5 seconds into the flight, which is just after motor burnout, when the rocket is 

traveling at 226 mph.  The rocket rotates in response (black trace on the left hand graph) to align itself with the new 

angle of the total oncoming airstream.  The center of gravity of the rocket (green trace on the left hand graph) 

continues to fly in the same direction it was moving before the step, in this case, straight up, because there is no 

component of thrust to accelerate the rocket along the X-axis.  Therefore, the angle of the direction of the flight path 

of the center of gravity, CG , remains unchanged when the wind step occurs after motor burnout.   
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The size of the rotation angle is the ratio of the wind velocity to the total velocity of the oncoming airstream at 1.5 

sec 

0.253deg
step

w
T

T t

v

v
    

and, since the flight path angle is zero,  

 T   

 

The slight drift in the flight path angle after the step is due to the drag term in the X-axis equation of motion.  

Because the rocket angle of attack has a slight negative average due to its phasing (short positive quarter cycle 

followed by a half negative cycle), the drag term causes a small negative X-axis velocity which causes the small 

negative drift in the flight path angle.   The X-axis side-to-side motion continues after motor burnout because the 

motion is due to the lift force, so the enhanced damping also continues after motor burnout due to the coupling 

between the X-axis equation of motion and the rotational dynamics equation15. 

 

  

 
15 (Fetter T. B., 2024, p. 16) 
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Figure 2-19  Response of TR-1 to a 1 mph step in wind velocity at 1.5 sec, after motor burn out (1.3 sec) 

 

 

2.6 Angle of Rotation Sensitivity Analyses 

 

What impact does the design of a rocket have on its propensity to rotate into the wind?  Since a closed form solution 

for the magnitude of the rocket’s rotation into the wind does not exist, a series of sensitivity analyses must be used 

to evaluate the rotational angle and flight path sensitivities to changes in the rocket design parameters.   For each 

sensitivity graph, a design parameter is changed over a range of values, and the complete flight model is then run to 
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determine the rocket’s rotation and flight path angles for each value of that design parameter.  The resulting graph 

shows the rotation angle and flight path angle versus the design parameter as it is varied about a nominal value.  

 

To determine the magnitude of the rotation angle and the flight path angle, a single value for the magnitude of the 

rotational step response must be chosen.  The average value of the step response at motor burnout is the value used 

here as shown in Figure 2-20.  By this time, the initial wind-caused rotation is complete, and the contribution of 

gravity is still small, so this is a good representation of the size of the initial turn due to the wind perturbation. 

 

To determine this angle, a line is first fit to the complete flight model step response for those two angles, as shown 

in Figure 2-20.  The line is fit to the data over a range starting at motor burnout and ending 4 seconds into the flight.  

Within that range, the step has completed and the impact of the gravity turn is still minimal.  The time is long 

compared to the frequency of the ringing, so a center value of the damped oscillation can be determined.  The value 

that is used for the sensitivity analysis is the value of the best fit line at the time of motor burn out.   

 

 

 

    

Figure 2-20  Line fit for determining the angle of rotation and flight angles 

 

 

 

The first sensitivity figure, Figure 2-21 , shows the rotational sensitivity to the wind velocity.  The step response of 

the rocket rotation angle and the flight path angle are both linear functions of the velocity of the wind that occurs as 

the rocket is leaving the launch guide.  The frequency of oscillation and the damping ratio are constant over the 
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range of wind velocities16.  Because the flight path angle increases with increasing wind velocity, the maximum 

altitude decreases with increasing wind velocity.  Also, the larger the initial wind induced angle of the flight path, 

the earlier in the flight the gravity turn starts to have a significant impact on the flight path angle.  

  

 
16 (Fetter T. B., 2024, p. 11) 
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Figure 2-21  Rotation parameters sensitivity to wind velocity 
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The following figures,  Figure 2-22 to Figure 2-25, show the sensitivities of the rotational parameters to the key 

rocket design parameters, including the fin size, body tube length, nose weight mass, and the density of the rocket 

construction material.  All the graphs are calculated using the component parameters from test rocket TR-1 except 

for the one parameter that is being varied about its nominal value from TR-1.  Each graph indicates the nominal 

parameter value for TR-1 which has a 2.6 caliber stability margin at motor burnout.    

 

Since TR-1 starts with a 2.6 caliber stability margin, a negative value of nose weight mass, which is possible in a 

simulation, is used to give a sensitivity range that covers lower values of stability margin.  The fin scaling 

sensitivity, k, is a linear scaling factor for the size of the fin, with a value of 1 being the nominal size of TR-1’s fins.  

The material density sensitivity assumes the rocket is constructed from material all the same density.  The range of 

densities includes the range from paper and balsa up through epoxy/fiberglass.  For the TR-1 design, it is not 

possible to get to one caliber of stability margin by just varying the material density, using a reasonable range of 

material densities.   

 

For each figure, the first graph shows the rocket rotational angle and the flight path angle versus the design 

parameter.  The graph below the angle sensitivity graph shows the stability margin (the distance between the center 

of pressure and the center of gravity) sensitivity.  Even though it has been shown that the rotational dynamic 

stability does not directly correlate to the stability margin17, the term “stability margin” is still used here for the 

distance between the center of pressure and center of gravity because of its common usage in the rocketry 

community.  For both the angle sensitivity graph and the stability margin sensitivity graph, the right hand vertical 

marker is the nominal value for that parameter for test rocket TR-1.  That parameter is then varied over a range that 

is less than and greater than its nominal value.  The left hand vertical marker is the sensitivity parameter value that 

gives 1 caliber of stability margin as can be seen on the stability margin graph.  The useful range of the sensitivity 

parameter for a stable rocket is to the right of this line since a stability margin of less than 1 caliber is not 

recommended to ensure stability.  The graph on the top right shows the flight profile for five discrete sensitivity 

parameter values listed in the key table.  The bottom two graphs show the individual step responses for the angle of 

rotation and the flight trajectory angles.   

 

Figure 2-22 shows the sensitivity to body tube length.  Above about 1.2 ft length needed for 1 caliber of stability 

margin, the rotation and flight path angles change very little, even though the stability margin varies over a large 

range.   

 

Figure 2-23 shows the sensitivity to the nose weight mass.  The rotation and flight path angles are more sensitive to 

increasing the nose weight mass than they are to increasing the body tube length.   

 
17 (Fetter T. B., 2024) 
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Figure 2-24 shows the sensitivity to the fin size.  The rotation and flight path angles are most sensitive to the change 

in relative fin size within a reasonable range of values for each design parameter. 

 

Figure 2-25 shows the sensitivity to the material density.  There is very little change in the rotation and fight path 

angles with the change in the material density, but there is a large change in the rise time of both the rocket rotation 

angle and flight path angle.   

 

These graphs show that some of the rocket design parameters have a greater impact on the rotational and flight path 

angles than others, but that impact is not directly correlated to the stability margin (distance between the center of 

pressure and center of gravity).   
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Trace red orange green blue vilot 

BT Length 0.7 ft 1.25 ft 2.35 ft 3.175 ft 4.0 ft 

 

Figure 2-22  Rotation parameters sensitivity to body tube length 
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Trace red orange green blue violet 

Nose Mass -12 oz -6 oz 0 oz 6 oz 12 oz 

 

Figure 2-23  Rotation parameters sensitivity to nose weight mass 
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Trace red orange green blue violet 

Fin Size 0.67 0.95 1.3 1.65 2.0 

 

Figure 2-24  Rotation parameters sensitivity to fin size 
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Trace red orange green blue violet 

Density 0.3 oz/in3 0.725 oz/in3 1.15 oz/in3 1.575 oz/in3 2.0 oz/in3 

 

Figure 2-25  Rotation parameters sensitivity to material density 
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All the flight trajectories in the previous figures show that the maximum altitude decreases as the sensitivity 

parameter value increases.  Figure 2-26 shows that the total mass of the rocket increases significantly with the 

increase in all the sensitivity parameters, as would be expected.   The increasing total mass will have a significant 

impact on the maximum altitude of the rocket, but it is not clear how much of the reduction in maximum altitude is 

due to the increased mass and how much is due to the increase in the flight path angle.    

 

 

  

 
 

 

Figure 2-26  Total mass of the rocket vs sensitivity parameter 

 

 

To determine how much of the altitude loss is due to the change in the mass, and how much is due to the change in 

the flight path angle, a series of three flights can be simulated where the parameters for each flight can be set to 

distinguish between the impact of the mass versus the impact of the flight path angle.  
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Figure 2-27 shows a series of three flights where the body tube length is the sensitivity parameter being tested.  For 

the first flight, test rocket TR-1 is simulated with a 1 ft body tube length using material density of 1 oz/in3, the 

density of fiberglass.  For the second flight, the body tube length is increased to 2 ft, which increases the total mass 

of the rocket from 2.7 lb for the first flight to 3.3 lb for the second flight.  The resulting peak altitude drops almost 

400 ft.  The angle of the flight path also increases slightly due to the increase in the body tube length.  For the third 

flight, body tube length is kept at 2 ft, but the density of the material is reduced to .63 oz/in3 to reduce the total mass 

of the rocket back to the total mass of the rocket of the first flight with the 1 ft body tube.  The result is a peak 

altitude that is close to the peak altitude of the first flight with the shorter body tube but with the flight path angle 

similar to the flight path angle of the second flight with the longer body tube.  This is because the density of the 

material has very little impact on the flight path angle.  This shows that the reduction in the altitude is due almost 

entirely to the increase in the total mass of the rocket and not due to the change in the flight path angle due to the 

longer body tube.   

 

Figure 2-28 and Figure 2-29 show that the same is true for varying both the nose weight mass and the fin size.  In all 

three cases, the change in the total mass of the rocket is the cause of most of the reduction and the maximum altitude 

of the rocket, not the change in the flight path angle.  The flight path angle graph in Figure 2-29 shows that the 

change in the flight path angle for the fin size scenario is about 1.7 deg, the largest of the three scenarios. 
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Flight Trace Body Tube  Material Density Mass Stability Margin 

1 Black 1 ft 1 oz/in3 2.7 lb 0.7 

2 Green 3 ft 1 oz/in3 3.3 lb 4.5 

3 Red 3 ft 0.63 oz/in3 2.7 lb 5.3 

 

 

 

 

Figure 2-27  Changing body tube length while adjusting material density to maintain total mass 
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Flight Trace Nose Weight 
Mass 

Material Density Mass Stability Margin 

1 Black 4 oz 1 oz/in3 3.0 lbs 2.6 

2 Green 12 oz 1 oz/in3 3.5 lbs 3.2 

3 Red 12 oz 0.65 oz/in3 3.0 lbs 3.8 

 

 

 

 

Figure 2-28  Changing nose weight mass while adjusting material density to maintain total mass  
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Flight Index Fin Size Material Density Mass Stability Margin 

1 Black 1x 1 oz/in3 3.0 lb 2.6 

2 Green 2x 1 oz/in3 3.7 lb 2.4 

3 Red 2x 0.68 oz/in3 3.0 lb 2.9 

 

Figure 2-29  Changing fin size while adjusting material density to maintain total mass  
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Figure 2-30 shows the initial fight path angle required to match the reduction in maximum altitude due to a change 

in the mass of the rocket.  For the first fight, test rocket TR-1 is simulated with a material density of .63 oz/in3 .  For 

the second flight, the material density is increased to 1 oz/in3 , and the maximum altitude drops as the mass of the 

rocket increases from 2.5 lb to 3.0 lb.  For the third flight, the material density is changed back to the lighter .63 

oz/in3 density, and the initial launch angle is increased until the maximum altitude equals the maximum altitude of 

the second flight with the denser material.  The resulting launch angle 19°, which is significantly greater than the 

approximately 2° increase in the fight path angle seen in the prior 3 scenarios.  This shows it takes a significant 

initial flight path angle to match the reduction and the maximum altitude seeing in each of these scenarios due to the 

increase in the mass of the rocket. 
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Flight Trace Initial Launch 
Angle 

Material Density Mass Stability Margin 

1 Black 0 deg 0.63 oz/in3 2.5 lbs 3.2 

2 Green 0 deg 1.0 oz/in3 3.0 lbs 2.6 

3 Red 19 deg 0.63 oz/in3 2.5 lbs 3.2 

 

 

Figure 2-30  Initial launch angle needed to match the maximum altitude of the heavier rocket 

 

 

Figure 2-31 shows the rotational sensitivity to motor burn time for test rocket TR-1 nominally flying an H128W 

motor with a 10 mph wind.  In this case, no rocket parameters are varied.  The total impulse of the motor is kept 

constant, so the average thrust increases with decreasing burn time.  Both the rocket rotation angle and the flight 

path angle are very sensitive to motor burn time compared to the other sensitivity studies, within the reasonable 

range for each of these parameters used for the sensitivity studies.  The lower velocity of the rocket as the rocket 

leaves the launch guide with increasing burn time significantly increases the initial angle of the oncoming airstream, 

which increases the rotation of the rocket and its flight path.  Although a higher velocity causes increased drag 
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which can negatively impact the maximum altitude, in this case, the maximum velocity produced by the H128W 

motor is not enough to outweigh the increase in maximum altitude due to the decrease in rotation of the rocket. 

 

If the rotation of the rocket does not complete before motor burnout, the increase in the flight path angle would stop 

before the rocket rotation completes.  Figure 2-32 shows the rocket rotation and flight path angles for the burn time 

sensitivity analysis based on the H128W motor.  It shows that the rotation rate increases with faster burn times so 

that the rotation always completes before motor burnout, even for the fastest burn times shown.  This is because the 

faster burn time flights leave the launch guide at larger velocities and the natural frequency increases with the larger 

velocity, which leads to a faster rotational rise time.    

 

Figure 2-33 shows the flight paths for test rocket TR-1 flying a larger I200W motor while varying the burn time of 

the motor keeping the total impulse constant, and a 10 mph wind.  The total impulse of the I200W motor is large 

enough to cause velocities that are high enough that drag starts to significantly impact the maximum altitude of the 

flight.  For the shortest two burn times, the maximum altitude drops due to the increased drag term which is 

proportional to the square of the velocity.  The 1.75 second burn time is the optimal burn time, balancing the 

velocity needed to reduce the turn into the wind and the altitude loss due to drag.  The longest two burn times then 

see a reduction in the maximum altitude due to the greater turn into the wind.   

 

Figure 2-34 shows the flight paths for test rocket TR-1 flying the same larger I200W motor while varying the burn 

time of the motor keeping the total impulse constant, but with a 1 mph wind.  With the lower wind speed, the slower 

burn times all increase the maximum altitude because the loss in maximum altitude due to the wind is less than the 

loss in altitude due to the drag for all burn times, and the slowest burn time has the least drag.  This shows that the 

optimal burn time is slower the lower the wind velocity.  For zero wind, the longest burn time would always result in 

the highest maximum altitude up until the point where the rocket velocity is so slow that gravity starts to play a role 

in determining the maximum altitude (if the thrust were less than 1 g, the rocket would never get off the ground). 

 

The lower the wind velocity the longer the optimal burn time will be.  The stronger the wind the shorter the optimal 

burn time will be.   But for many fights where the motor size is too small to reach velocities where drag has a 

significant impact on the maximum altitude, the shortest burn time (within the range of burn times available in 

commercial motors) will always give the maximum altitude when there is a nonzero wind velocity. 
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Trace Burn Time 

red 0.5 s 

orange 1.125 s 

green 1.75 s 

blue 2.375 s 

violet 3.0 s 

 

 

 

 

 

Figure 2-31  Sensitivity to burn time for TR-1 flying on an H128W in a 10 mph wind 
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Trace Burn Time 

red 0.5 s 

orange 1.125 s 

green 1.75 s 

blue 2.375 s 

violet 3.0 s 

 

 

Figure 2-32  Rocket rotation and flight path angles for the burn time sensitivity analysis based on the H128W motor 
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Trace Burn Time  

red 0.5 s  

Altitude loss due to higher velocity drag 
orange 1.125 s 

green 1.75 s Optimal burn time 

blue 2.375 s  

Altitude loss due to greater rotation 
violet 3.0 s 

 

 

 

Figure 2-33   Flight paths vs. burn time for TR-1 flying on an I200W in a 10 mph wind 
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Trace Burn Time 

red 0.5 s 

orange 1.125 s 

green 1.75 s 

blue 2.375 s 

violet 3.0 s 

 

 

 

Figure 2-34   Flight paths vs. burn time for TR-1 flying on an I200W in a 1 mph wind 
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3 Flight Data 

3.1 Test Rocket TR-1 

 

Test rocket TR-1 was designed and built with the purpose of gathering flight data to test the models presented in the 

Rotational Dynamic Stability paper18, but was used to gather data for this paper as well.  The TR-1 design 

parameters needed for the flight model are given in Table 3-1.      

 

 

 

Figure 3-1  TR-1 test rocket 

 

 

Rocket diameter  rD  = 2.27 in Motor AT-H128W 

Nosecone length ncL  = 13 in Motor length mL  = 7.25 in 

Nosecone thickness ncT  = .125 in Motor mass mm  = .454 lb. 

Nosecone density nc  = 1.0 oz/in3 Motor propellant mass pm  = .207 lb. 

Nose weight nwm  = 4 oz Motor burn time bt  = 1.3 sec 

Body tube length btL  = 24 in Motor total impulse tI  = 172.9 N sec 

Fin root edge length rc  = 4.5 in Launch guide length lrl  = 10 ft 

Fin tip edge length tc  = 2 in Rocket total length neL  = 37 in 

 
18 (Fetter T. B., 2024) 
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Fin span from body s  = 2.5 in Rocket total mass  om  = 3.21 lb. 

Fin mid cord sweep ang c  = 26.6 deg Center of gravity CGL  = 22.89 in 

Fin thickness fT  = .15 in Center of pressure CPL  = 28.4 in 

Fin density f  = 1.0 oz/in3 Stability Margin  SM  = 2.42 

Number of fins N  = 3 Rocket moment of inertia LI  = 3.071 lb ft2 

Motor tube length mtL  = 6 in Rocket drag coefficient DC  = .8 

Motor tube diameter mtD  = 1.269 in Normal force coefficient NC   = 10.2 

Motor tube thickness mtT  = .062 in Rocket lift coefficient LC   = 10.2 

Motor tube density mt  = 1.0 oz/in3 Natural frequency     n = 0.49 Hz @ 50.9 mph 

Motor mount length mmL  = 0.188 in Natural frequency     n  = 1.05 Hz @ 110 mph 

MM density pw  = 1.0 oz/in3 
Natural frequency     n  = 2.24 Hz @ 227 mph 

Parachute/ebay mass parm  = 16.7 oz   Uncoupled damping ratio   = 0.0105 

Parachute length parL  = 4 in Coupled damping ratio ' = 0.0539 

Table 3-1 TR-1 model parameters 

 

The purpose of the flight instrumentation was to measure the rocket’s rotation about its three axes and its side-to-

side motion.  The rotation rate and acceleration of the rocket was measured using an RAF Datalogger19.  The 

Datalogger has two 3-axis accelerometers and one 3-axis rate gyroscope.   The Datalogger logs the data to an 

onboard micro-SD card which is downloaded into a Mathcad worksheet or an Excel spreadsheet where it is 

analyzed, and the flight graphs are generated.   The data sample rate for the Datalogger is 0.75 ms, but the data is 

decimated to a 7.5 ms sample rate using a Python script to reduce computation times before loading into a Mathcad 

worksheet for analysis.   

 

 

Figure 3-2  RAF Datalogger 

 
19 (Feretich, 2015-2018) 
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Since the Datalogger measures the rotational rate of the rocket’s three axes in the rocket frame of reference, the 

orientation of the rocket in the ground-based frame of reference must be determined by doing a frame of reference 

axis translation using Euler’s angles20.  This is done as a part of the post flight data analysis. 

 

The TR-1 electronics bay, which contains an Altus Metrum Easy Mini barometric deployment altimeter and the 

RAF Datalogger, is located rearward in the rocket, just ahead of the motor, to locate the accelerometers as close to 

the rocket’s center of gravity as possible.  A Beeline GPS is flown in the nosecone compartment. 

 

  

      

Figure 3-3  TR-1 electronics bay with RAF Datalogger (left) and Altus Metrum EasyMini (left) 

 

The rate gyroscope will see the same angular rotation about each of its axes no matter where it is located along the 

rocket’s length.  But the acceleration the accelerometer sees is impacted by its location along the length of the 

rocket.  The accelerometer will measure the acceleration due to thrust, gravity, drag, and any side-to-side motion of 

the rocket.  The side-to-side motion will be a combination of any side-to-side motion of the center of gravity of the 

rocket plus the side-to-side motion due to the rocket’s rotation about its x or y-axes if the accelerometer is located 

some distance from the center of gravity rotation point.  To measure just the side-to-side motion of the center of 

gravity, any acceleration component due to the rotational arc must be subtracted from the total acceleration.  This is 

possible by using the rate gyroscope to determine the rocket’s rotation, along with knowing the distance between 

center of gravity and the accelerometer’s location.  But there is always a potential source of error in making the 

measurements for the correction, so it is better to minimize the rotational motion by placing the accelerometer as 

close as possible to the center of gravity to eliminate rotational arc acceleration component.  In TR-1, the 

 
20 See Appendix 4 - Mapping Between 3-Dimensional Coordinate Systems 
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accelerometer is close enough to the center of gravity that the rotational component of the lateral acceleration can be 

neglected. 

 

3.2 TR-1 Flight Data   

 

The flight of TR-1 that will be analyzed in detail below occurred on October 15, 2022, at Tripoli Central’s October 

Skies launch at the Maddox Dairy in Helm, California.   

 

 

Figure 3-4  October 15, 2022, flight of TR-1 at October Skies 

 

 

The flight data consists of the Altus Metrum barometric altitude data and the RAF Datalogger accelerometer and 

rate gyroscope data.     

 

Figure 3-5 shows the altitude profile for the flight from the Altus Metrum altimeter data.  The winds were relatively 

calm at 5 mph with gusts to 10 mph at ground level, and the rocket went nearly vertically, although the slight turn 

into the wind was noticeable as the rocket left the launch rail.  Apogee was 1,606 feet at 9.38 seconds. 
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Figure 3-5  Altus Metrum barometric altitude profile 

Figure 3-6 shows the raw rotational rate and acceleration data from the RAF Datalogger.  The following analyses are 

all based on this data. 

 

 

   

 

 

  

 

Figure 3-6 Raw rotational rate and acceleration data for the rocket’s x, y, and z-axes 
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Euler’s angles allow for mapping parameters between the rocket x-y-z frame of reference and the ground X-Y-Z 

inertial frame of reference.  They are calculated from the x-y-z rotation rate data using equations (7.1-5) and are 

shown in Figure 3-7.   

 

 

   

Figure 3-7  Euler’s angles calculated form the rate gyroscope data 

 

To find the acceleration of the rocket along its z-axis, the raw z-axis acceleration data must be corrected for the 

constant 1 g field due to gravity.  Gravity is aligned with the ground frame-of-reference Z-axis, so the z component 

of the Z-axis unit vector is the portion of 1 g to subtract from the z-axis acceleration measured data.  The Z-axis unit 

vector, shown in Figure 3-8,  is calculated from (3.2-1) and Euler’s angles equation.  The notation ZzU means the 

component of the Z-axis unit vector aligned in the direction of the z-axis.  The z-axis of the rocket starts out aligned 

with the ground frame Z-axis but moves away from alignment as the rocket tilts into the wind.  The rocket continues 

to rotate as it approaches apogee.  The parachute deploys from the front end of the rocket which orients the 

accelerometer in the same direction it was oriented during the upward portion of the flight.  20 seconds into the 

flight, the rocket starts swinging under the parachute at a slight angle from vertical. 

 

 (0,0,1) cosZz EulerU z    (3.2-1) 

 

 

Figure 3-8  z component of the Z-axis unit vector 
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The gravitationally corrected z-axis acceleration and velocity are calculated by  

 

 zcimu zimu Zza a g U    (3.2-2) 

 zcimu zcimu zcimu imuv v a t    (3.2-3) 

 

and shown in Figure 3-9.  Once corrected for the gravitational field, the graph shows the acceleration ranged from 

11.5 g’s to 8.5 g’s during thrust, then the rocket deaccelerated at a little more than -1 g due to a combination of 

gravity and drag during coast, approaching -1 g as the rocket slowed.  Once the parachute deploys, the rocket has a 

constant velocity, so the acceleration stays at an average of 0 g’s.  At 20 seconds, the acceleration starts to show a 

net positive value due to the rocket’s swinging under the parachute, producing a slight centrifugal acceleration.  

During recovery, the Datalogger faces forward, the same orientation as it is in flight, so the acceleration due to 

swinging is in a positive direction. 

 

  

Figure 3-9  z-axis acceleration and velocity corrected for 1 g gravitational field 

 

 

The polar angles are calculated from the z-axis unit vectors, equations (7.1-6), and shown in Figure 3-10.   , the 

polar angle from vertical, is the three-dimensional proxy for y , the orientation angle of the rocket from vertical in 

the 2-dimensional model.  For this flight, the rocket rotated approximately 8 degrees as it left the launch rail, with a 

large initial overshoot in the step response, and the step response oscillations dampened over the next several 

seconds.  The oscillation frequency starts around 3 Hz and slows as the rocket slows.   , the polar projection of the 

rocket’s z-axis onto the XY plane, shows the rotation of the rocket’s flight path projected onto the ground is constant 

at around 105 degrees.  This indicates that the rocket flew in a 2-dimensional plane.   
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Figure 3-10 Polar angle s for the z-axis of the rocket in the ground (X-Y-Z) frame of reference 

 

 

Figure 3-11 shows the spin rate and total angle of rotation about the rocket’s z-axis.  This shows that over the entire 

10 seconds of the upward fight, the rocket rotates just one revolution.  With minimal z-axis spin and the rocket’s 

flight path falling along a two-dimensional plane, the two-dimensional model is valid for this fight. 

 

     

Figure 3-11  z-axis spin rate and rotational angle 

 

The location of the tip of the nose cone in the ground-based frame of reference shows the rocket’s attitude, and  is 

given by the z- axis unit vector from equations (7.1-6).  Plotting zYU  vs. zXU  in Figure 3-12 shows the trajectory of 

the tip of the nose cone in three dimensions projected onto the XY plane and viewed from above.  On this graph, 

negative Y, north, is up and negative X, east, is to the right.  After the initial turn into the wind toward the southeast, 

the rocket tip travels several times in a tight circle before starting to arc over at the end of the coast phase. 
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Figure 3-12  The projection of the motion of the tip of the nose cone onto the XY plane 

 

 

 

The measurement of the flight path angle can be determined from the three-dimensional position data provided by 

the GPS.  First, the GPS coordinate angles must be converted into linear feet along the lines of constant latitude and 

longitude on the surface of the earth.  For the small changes in distance compared to the radius of the earth, it can be 

assumed that these changes map directly to a change in distance on the flat XY ground plane where latitude maps 

into the distance Xd along the X-axis and longitude maps into distance Yd along the Y-axis. The equations to 

convert to latitude and longitude angel to feet are21 

 

 365222.0latitude latitudel    (3.2-4) 

 
2

36217.6 cos
360longitude longitude latitudel
       

 
 (3.2-5) 

 

where the angle is in units of degrees distances are in feet. 

 

 

 

 
21 (Fetter T. B., 2015) 
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Figure 3-13  Distance along lines of constant longitude and latitude 

 

 

 

   

The flight path angle from Figure 2-7 can then be calculated by  
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 (3.2-6) 

 

 

 

3.3 Comparing the Model to Flight Data 

 

To validate the 2-D flight model’s prediction of the rocket’s rotation due to the wind, the rotation rate flight data 

from the RAF Datalogger described in Sections 3.1 and 3.2 was used.  Figure 3-14 shows the results of three flights 

of test rocket TR-1.  For each, the left hand graph shows the modeled and measured rotational angle.  For the 

measured angle, the 3-D polar angle is used as described in Section 3.2.  For all three flights, a 10 mph wind 

velocity, which is typical for the launch site, was used in the model.  For each flight, the right hand graph shows the 

z-axis rotation rate of the rocket which comes directly from the gyro data. 
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For all three flights, the frequency of oscillation and damping ratio, the rate the oscillations decrease, are a close 

match.  The measured initial peak is a little larger than the simulation, but the oscillation quickly dampens to match 

the simulation.  In the first two flights, the angle of rotation matches very closely, at around 7.5 deg.   

 

For the third flight, the measured rotation angle is around 20 deg.  From Figure 2-21, it would require a 26 mph 

velocity wind during the first several seconds of the launch to cause a 20 deg rotation, which is possible.  Another 

possible cause of the large rotation is launch-guide whip which can cause rockets to rotate as they leave the launch 

guide.  But the rails used here are the 1010 aluminum launch rails which are very stiff, especially for a rocket as 

small and light as test rocket TR1, so it is unlikely significant launch guide whip occurred on these flights.  A short 

duration off axis thrust could have caused the excessive rotation at launch.  The motor thrust is also a force acting on 

the rocket that can have a rotational component if the thrust is slightly off-axis.   Larger than predicted rotations 

have been measured on other flights as well.  But because the rockets are not launched in a controlled wind 

environment, it is not certain whether these are caused by the initial step in wind velocity or by one of these other 

mechanisms.  More data needs to be gathered to determine how often these larger than predicted occur. 

 

For all three flights, the z-axis spin rate of the rocket is low during the first 5 seconds of the flight, the time during 

which the rocket is responding to the initial step in wind velocity.  A low spin rate is one of the requirements for the 

2-D model to be valid to describe the rocket’s rotation into the wind. 
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10/15/2022 flight 

    
    

5/19/23 flight 

   
   

10/16/2022 flight 

 

Figure 3-14  Three flights of TR-1 on an AT H128-W using a 10 mph wind step in simulation 
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The 5/19/23 flight of test rocket TR-1 included a Beeline GPS.  Figure 3-15 shows the rotation and flight path angles 

including the measured flight path angle, gps .  The Beeline GPS only records one data point per second, so the first 

valid data point is one second into the flight.  The measured flight angle parallels the modeled flight angle but is 

about 4 degrees greater.  The flight angle determined from the GPS data is an absolute angle that includes the initial 

angle of the flight path due to the angle of the launch guide.  The modeled for the flight path angles, CGsim , 

assumes the launch angle is 0 deg.  The GPS data shows that the angle of the launch guide was around 4 degrees.  

Had all the rotational angles included the initial tilt of the rocket, the flight path angles would match. 

 

The 1 second data rate of the GPS data is not fast enough to capture the small oscillations in the flight path angle, 

but it does capture the long term trend.  GPS units sometimes also s loose lock at launch due to the high 

acceleration, but in this case, lock was maintained.  

 

The right hand graph in Figure 3-15 shows a projection of the GPS flight path onto the X-Y ground plane.  The 

flight originates at 0,0, and flies along a straight line to the north-east, and then drifts to the south south-east under 

parachute.  Because the upward portion of the flight occurs along a flat XY/Z plane, this also shows that the 2-D 

model is a valid representation of the rotational dynamics of the flight. 

.    

          

Figure 3-15    5/19/23 flight of TR-1 on an AT H128-W using a 10 mph wind step in simulation 
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4 Summary 

 

 The two primary rotational angles are the rocket rotation angle of the rocket and the flight path angle 

 The flight path angle is the rotation angle most easily observed from the ground as the angle that the rocket 

rotates into the wind 

 The modeled rotational and flight angles were shown to generally agree with measurements from the flights 

of test rocket TR1 

 If the wind step occurs before motor burnout, the rocket accelerates along the X-axis, increasing the flight 

path angle 

 If the wind step occurs after motor burnout, the rocket rotates but does not accelerate along the X-axis and 

the flight path angle does not change due to the step in wind velocity 

 The rocket’s rotational angle is greater than the flight path angle because the rocket flies at an offset angle 

to its flight path angle determined by the ratio of the wind velocity to the forward velocity of the rocket 

 The sensitivity studies show that there is not a direct correlation between the change in the stability margin 

(distance between the center of pressure and center of gravity) and the rocket rotation or flight path angles 

 All the flight model parameters impact the rotation of the rocket into the wind, not just the distance 

between the center of pressure and the center of gravity (stability margin) 

 Being over stable does not necessarily mean that the rocket will be more prone to rotating into the wind 

 The increase in the total mass of the rocket that comes with an increase in the body tube length, fin size, 

nose weight mass, or material density, has a bigger impact on the maximum altitude of the rocket than does 

the increase in the magnitude of the rotational step response due to those parameters 

 After changing a rocket design parameter (body tube length, fin size, nose weight mass), if the mass of the 

rocket is adjusted by changing the material density to bring it back to the mass of the rocket before the 

design parameter was changed, the rocket still turns nearly the same as the rocket without the adjusted 

density but reaches nearly the same maximum altitude as the original rocket 

 In a wind, the rocket’s maximum altitude is very sensitive to motor burn time 

 There is an optimal burn time that optimizes altitude loss due to the rotation into the wind with altitude loss 

due to drag - the higher the wind, the shorter the optimal burn time 

 To reach maximum altitude, minimizing the total mass is much more important than making changes that 

that just minimize the rocket’s rotational or flight path angles. 
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5 Appendix 1 - Tools & Equipment 

 

Mathcad was the main tool used on this project for modeling, numerical analysis, symbolic analyses, measurement 

data analysis, and graphing and analysis.   

 

RockSim was used to validate the parameters calculated by the model such as moment of inertia and center of 

pressure. 

 

Microsoft Office Word was used to write this paper  

 

MathType embedded app for Office was used to create the equations in MS Word 

 

TurboCAD was used to create most of the figures other than graphs and create the test rocket eBay sled design 

 

PowerPoint was used to create some figures 

 

The RAF Data Logger was used to measure the rocket’s 3-D acceleration and axis rotations  

 

A Beeline GPS was used to get flight path data and validate the wind speed at the flight time for comparing the 

model simulation to the measured rotational response 

 

Test rocket TR-1 was built from standard off-the-shelf fiberglass parts from Mad Cow Rocketry.   

 

A Dremel 3D45 3D printer was used to print the test rocket ebay sled   

 

Numerous home shop woodworking shop tools were used to build the test rocket TR-1 

 

All test flights were done at Tripoli Central’s launch site at the Maddox Dairy in Helm California 
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6 Appendix 2 – 3-D Flight Model 

 

This is the complete set of equations that is the starting point for a 3-dimensional flight trajectory and rotational 

dynamics model.  The 2-dimensional model is a subset of this model.   

 

Newton’s law for the position of the CG in the inertial (ground) frame of reference 
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m F F F
dt

    (5.1-1) 
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d d
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     (5.1-3) 

 

Euler’s dynamic equations for the rotation about the CG in the rocket frame of reference.  This uses symmetry to 

eliminate the z-axis coupling with the x and y-axes (   0L LI I   
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Euler’s angles for translation from the rocket frame of reference to the inertial (ground) frame of reference.  These 

rotation rate equations are consistent with the conventions used in Sidi22 but the derivation is shown in Thomson23   

using a different order of rotation convention 

 

 
sin sin cos sin

cos cosx y z
d

dt

      
 
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 cos siny z
d

dt

         (5.1-8) 

 

22 (Sidi, 2002, p. Appendix A) 

 
23 (Thomson, 1986, p. 38) 
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7 Appendix 3 – 2-D Flight Model 

 

Figure 7-1 shows the 2-dimensional, 3 degree-of-freedom model.  X and Z are used to denote the fixed ground 

frame axes, rather than X and Y, to be consistent with the conventions that are used in the 6 degree-of-freedom 

model where Z is the vertical axis.  In this system, the Y-axis is coming out of the plane of the figure.  An angle of 

rotation is denoted by the axis about which the object rotates.  Since the rocket frame of reference axes, x, y, and z, 

start out aligned with the ground-based frame of reference axes, X, Y, and Z, in the three-dimensional model, the 

rocket, in the two-dimensional model, rotates about its y-axis.  In the two-dimensional model, the rocket’s y-axis 

always remains orthogonal to the plane of the ground XZ-axes and aligned with the Y-axis.  To be consistent with 

the 6 degree-of-freedom model, the y-axis will be used as the axis of rotation of the rocket, even though the y-axis is 

not shown explicitly in the 2-dimensional drawings.   The direction of rotation about the y-axis shown in Figure 7-1 

indicates the positive direction for a right-handed coordinate system where the positive y-axis comes out of the 

drawing.  

 

 

Figure 7-1 Model for 3-degrees of freedom 

 

 

There are three second order differential equations of motion that must be solved simultaneously to determine the 

trajectory and orientation of a rocket in flight in the 2-dimensional model.  The first two equations describe the 

motion of the center of gravity of the rocket along the X and Z-axes in the ground-based frame of reference and the 

last one describes the rotation about the y-axis in the rocket frame of reference.  In the 2-dimensional system, the 

translation from the rocket frame of reference to the inertial ground frame of reference is just the rotational angle of 

the rocket, y , so no additional axis translation equations are required. 
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Each second order differential equation can be written in terms of two first order differential equations.  This is the 

convention used by a state variable system which defines the state variables in terms of first order differential 

equations.  The state variable convention is used here to be consistent with the form used by Mathcad for solving 

nonlinear simultaneous differential equations numerically.   
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 2 2 1
y

L y R y

d
I M M M

dt


    (6.1-9) 

 

 

These six differential equations will be used to solve for the six state variables as a function of time.  The six 

variables are , , , , ,X X Z Z yd v d v   and y  They describe the rocket’s location and rotational angle in 2-dimensional 

space, as well as its velocity and rate of angular rotation.  These six variables are referred to as the state variables of 

the system because they are the minimum number of variables needed to completely describe the state of the system 

at any instant in time.  Once the state variables are determined, all other parameters of interest can be found from the 

state variables using algebraic equations that are functions of the state variables.  All parameters in the model are 

written as functions of these six variables, plus the two inputs to the model, the motor thrust and the wind velocity.    
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Because the state variables are all functions of time or frequency, it is common, to use the nomenclature ( )y t in the 

time domain equations, and ( )y s in the frequency domain equations when writing the state variable y .  This 

paper will simply use the nomenclature y to keep the equations simpler and easier to read, and the context of the 

equation to determine whether the variable is a time or frequency domain variable. 

 

The key velocity vectors and angles used by the model are shown in Figure 7-2.  Figure 7-3 shows the velocity 

relationships in more detail.  The model assumes that the wind that causes the rocket to rotate is approaching from 

the -X (westerly) direction.  The rocket rotates into the upper left-hand quadrant as a result.  Tv  is the velocity of the 

total oncoming airstream.   

 

 

 

Figure 7-2 Key rotational angles 
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Figure 7-3 Key velocity vectors and angles 

 

 

Rather than stating equations (6.1-4) to (6.1-9) directly in terms of the state variables, which makes the equations 

very long, intermediate functions are used.  The intermediate variables also provide insight into the behavior of the 

model.  The following equations define the intermediate variables in terms of the state variables of the system.   

 

CG  is the angle of the velocity vector, CGv  , of the center of gravity of the rocket, which is not necessarily the same 

direction as the rocket is pointed.  It is defined by the X and Z-axis velocities.   

 

 arctan X
CG

Z

v

v
   (6.1-10) 

 

  is the difference between the direction the rocket traveling and the rocket is pointed   

 

 CG y     (6.1-11) 
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The Z-axis component of the oncoming airstream is the negative of the Z component of the rocket’s velocity.  The X 

-axis component of the oncoming airstream is the negative of the X-axis component of the rocket’s velocity plus the 

velocity of the wind.  The total oncoming airstream velocities are  

 

 TX w Xv v v   (6.1-12) 

 TZ Zv v   (6.1-13) 

 2 2 2 2( )T TX TZ w X Zv v v v v v      (6.1-14) 

 

T is the angle of the total oncoming airstream.  Since the airstream is opposite the direction of the rocket’s velocity, 

the angle is in the quadrant opposite the rocket’s direction of travel.  T  is the angle of the oncoming airstream 

reflected back into the quadrant of the rocket’s travel.   

 

 arcsin arcsin w XTX
T

T T

v vv

v v
  


       (6.1-15) 

 arcsin w X
T T

T

v v

v
  


     (6.1-16) 

 

The angle of attack is the difference between the angle of the negative of the oncoming airstream and the rotation 

angle of the rocket’s rotation 

 

 at T y     (6.1-17) 

 

The trajectory force equations are24 

 

 2 sin
2DX r D T TF A C v
       (6.1-18) 

 2 cos
2DZ r D T TF A C v
       (6.1-19) 

 2 cos
2LX r L at T TF A C v
         (6.1-20) 

 2 sin
2LZ r L at T TF A C v
          (6.1-21) 

 

24 (Mandell, Caporaso, & Bengen, 1973) 
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 sinTX T yF F    (6.1-22) 

 cosTZ T yF F   (6.1-23) 

 

and the rotational force and moment equations are 

 

 2
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Equations (6.1-4) to (6.1-28) are the complete model of a rocket in flight needed to describe its location and 

orientation in 2-dimensional space.  The 6 first order differential equations (6.1-4) to (6.1-9) that solve for the 6 state 

variables are nonlinear, so they cannot be solved in closed form, but they can be solved numerically using the 

rkfixed function in Mathcad25.   

 

For small angles of attack, the lift coefficient, LC  , is assumed to be the same as the normal force coefficient, NC  .  

The value of the normal force coefficient is determined using the methods described by Barrowman26.  The drag 

coefficient is determined from RockSim27. 

 

Figure 7-4 shows examples of the output of the complete Mathcad flight model using the parameters for the test 

rocket TR-1.  The physical parameters for TR-1 are given in Section 3.1.   Most of the graphs in this paper are based 

on the output of the model using the TR-1 parameters. 

 

  

 

25 (Mathcad Home Page, n.d.) 

26 (Barrowman J. , 1968) 
27 (RockSim, 2024) 
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Z-axis acceleration 

 
Total incident airstream velocity 

 
Z-axis distance (altitude) 

 
Trajectory 

 
Rotation angle of the rocket 

 
Flight path trajectory angle 

 
Angle of attack 

 
Difference between the rocket rotation angle and the flight path angle 

Figure 7-4  Example of the output of the complete trajectory and rotational stability model using the parameters for 

test rocket TR-1 flying on an AT H128W motor and a 10 mph step in wind velocity as the rocket leaves the launch 

guide 
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Figure 7-5 shows a comparison between the flight model (red trace) and flight data (blue trace) from test rocket TR-

1.  The altitude prediction matches very closely, and the rotation angles match very closely over the first three 

seconds assuming an initial 10 mph step in wind velocity. 

 

 

    
 

Figure 7-5  Comparing the model to flight data from 5/19/23 flight of TR-1 assuming a 10 mph wind 

 
 
 
 
Figure 7-6 shows a comparison of the forcing moment, the top graph, the rotational rate damping moment, the left 

graph, and the jet damping moment, the right graph for TR-1.  The jet damping aligns in phase with the rotational 

rate damping, so it adds to the overall damping of the system, as expected.  For the AT-H128W motor used in test 

rocket TR-1, the magnitude of the jet damping calculated using the core burning motor equation is less than one 

tenth the rotational damping magnitude, so the jet damping would add very little to the rocket’s rotational stability.  

The core burner model was used for all the simulation results presented in this paper as it matches the geometry of 

the motor used.  Also note that the jet damping only contributes for the length of the motor burn. 
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Figure 7-6  Comparing the forcing moment, 1M , rotational rate damping moment, 2M , and the jet damping 

moment calculated for a core burning motor, 2RcbM , for test rocket TR-1 flying on an AT H128W motor and a 10 

mph step in wind velocity  
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8 Appendix 4 - Mapping Between 3-Dimensional Coordinate Systems  

 

Although the dynamic stability model presented here is a 2-dimensional model, the rocket that is used to collect data 

to verify the model flies in 3-dimensional space.  If the rocket has minimal z-axis spin and the rocket flies in a single 

plane, the 2-D model is an accurate model of its dynamic behavior.  But to be accurate, even with minimal spin, the 

motion of the actual rocket flight must first be determined in 3-dimensions and then mapped to 2-dimensions. 

 

In the 2-D system, the rocket can only rotate only about a single axis.  A rotation through a single angle is all that is 

required to map the rocket axis into the ground frame axis system.  In the 3-D system, the mapping from then x-y-z 

rocket axis system to the ground-based X-Y-Z system, is not as simple.  As shown in Figure 8-1, the rocket can 

rotate about all three axes in the rocket frame of reference, and since the x-y-z axis system follows the rocket, the x-

y-z axes can be in any orientation in the ground X-Y-Z coordinate system.   There are several methods for 

determining the location of a coordinate point in one axis system in the other rotated coordinate system.  

Quaternions, one method, does the translation in a single rotation step.  Euler’s angles does the translation in three 

orthogonal rotations through two intermediate axis systems.  Quaternions have advantages, including computational 

efficiency and a lack of singularities.  Euler’s angles, used here, are easier to understand and work fine for post-

processing flight data.   

 

Figure 8-1  Orientation of the rocket in 3-dimensional space  
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Using Euler’s angles, it takes three separate rotations to map between two 3-dimensional coordinate systems at 

arbitrary orientations relative to each other.  Each rotation is described by an angle, so it takes three rotation angles 

to describe the orientation of one axis system relative to the other.  Those rotation angles are called the Euler’s 

angles and are denoted and  The equations that are used to map between two coordinate systems are called 

Euler’s angle equations. 

 

Rotating an object about its x, y, and z-axes will result in a different final orientation depending upon the order in 

which the rotations are done.  For a given rotation angle about each axis, the order sequence, x-y-z, y-x-z, or z-x-y, 

will result in different final locations for each sequence.  The same order of rotation must be used to end up in the 

same final orientation each time a sequence is done.  Therefore, the equations that are used to map between 3-D 

coordinate systems are unique to the order of each of the intermediate axis rotations used to derive the angle 

equations.  A different order will result in a different set of Euler’s equations and angles.  For Euler’s angles to 

work, the same rotational order used to derive the Euler’s angles equations must then be used to translate between 

the two axis systems using those angles.  

 

Three sets of three equations are needed when using Euler's angles.  The first two sets of equations are used to 

translate a coordinate point between two rotated coordinate systems using Euler’s angles.  The third set of equations 

is used to find Euler’s rotation angles for the current orientation of the two axes systems.  The order convention 

means that all three sets of equations must have been derived using the same order of rotation convention.   

 

There are numerous sources that cover the derivation of Euler’s angles28 that offer good explanations of the 

derivation.  The equations used here are based upon the order of rotation conventions used in Spacecraft Dynamics 

& Control29 in the order of rotation:  about x,   about y, and   about z. 

 

Euler’s equations translate the coordinates of a point in one axis system into the coordinates of that point in a second 

axis system, where the two axis systems can be at any spatial orientation relative to each other, as described by 

Euler’s angles.   This first set of Euler’s equations map a point, (x, y, z) in the rocket frame, into a point (X, Y, Z) in 

the ground frame. 

  

 

28 Two examples are (Thomson, 1986, p. Chapter 3) and (Sidi, 2002, p. Appendix A) 
29 (Sidi, 2002, p. 321) 
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 (7.1-1) 

 

Conversely, a point in the ground frame can be mapped to the rocket frame by the second set of Euler’s equations. 
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 (7.1-2) 

 

 

The equations above require knowing Euler’s angles at any moment in time.  As the rocket rotates about its axes, the 

axes follow it, so the rocket axes are rotating in the ground-based frame of reference, and the Euler’s angles are 

changing continuously.  The sensor that is used to determine the rate of rotation is a rate gyroscope.  A rate 

gyroscope provides the rate of rotation,  , about each of the rocket’s three axes, x, y, and z.   

 

The rotation rate version of Euler’s angles30  are used to find Euler’s angles.  They determine the change in Euler’s 

angles in terms of the rate of rotation about each of the rocket’s x, y, and z-axes, x , y , and z , the output of the 

rate gyroscope.  Based on the same order convention used above, the continuous time version of these equations is 
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 (7.1-3) 

 

 

30 These rotation rate equations are consistent with the conventions used above, but the derivation is shown in    

(Thomson, 1986, p. 38) using a different order of rotation convention 
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The rate equations give the continuous rate of change of Euler’s angles for continuous rotation rates about each of 

the x, y, and z axes.  If the rate of rotation about each of the axes is measured continuously from a known starting 

orientation, then the absolute orientation of the rocket axis system can be determined at any instant in time.  Because 

the rotation about each of the three axes is being measured continuously, the order of rotation no longer matters, as 

the angular change about each of the axes in any instant of time approaches zero.   

 

To find Euler’s angles at any point in time, 1t , the rate equation is integrated, or summed continuously, from the 

starting point to that point in time  

 
1

1

0

( )
( )

t
d t

t dt
dt

    (7.1-4) 

 

The rate gyro measures the rotation rate at a fixed sample rate, for example, 100 samples per second.  If the sample 

rate is fast compared to the rate of rotation, it effectively looks like a continuous time measurement, that is, the 

sample rate must be much greater than the bandwidth of the rocket’s rotational dynamics.   

 

The data is handled as a discrete time system, so the continuous time differential equations become discrete time 

difference equations.  To solve for Euler’s angles from the change in Euler’s angles, a discrete time integration is 

used where 

 
d

dt t

 



 

and  

1samp n nt t t t      

 

And the integration is a continuous running sum 

 

 sampt       

 sampt       

 sampt       

 

which leads to the solution for Euler’s angles at each data point, n 
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 (7.1-5) 

 

where 0 0  , 0 0  , and 0 0  .  Once the value of Euler’s angles are determined for each point in time as the 

rocket rotates about each of its axes, the location of any coordinate point in the rocket frame can be determined in 

the ground frame by using equations (7.1-1), and any coordinate point in the ground frame can be determined in the 

rocket frame by using equations (7.1-2). 

 

The orientation of the rocket’s z-axis in the X-Y-Z axis system can be used to determine the orientation of the rocket 

for an observer on the ground.  Figure 8-2 shows an example of the path the tip of the nosecone takes during the 

rocket’s flight.  That point is determined by plotting the coordinate point (X,Y,Z) in the ground frame where 

(X,Y,Z) is determined by solving equations (7.1-1) for (x,y,z) = (0,0,1), or the unit vector of the z-axis of the rocket, 

zU .  For the z-axis unit vector, the equations (7.1-1) become 

 

 

(0,0,1) sin sin

(0,0,1) sin cos

(0,0,1) cos

zX Euler

zY Euler

zZ Euler

U X

U Y

U Z

 

 



 

  

 

 (7.1-6) 
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Figure 8-2  Visualization of the spherical path taken by the tip of the rockets nosecone during flight looking down 

toward the ground from above (SpeedRunner 75  5/21/2016)  

 

The rotation of the rocket about its z-axis (spin) can be determined by either the x or the y-axis unit vector.  Other 

quantities, such as distance, velocity, and acceleration, can also be translated between the frames of reference using 

Euler’s angles. 

 

Polar coordinates are used to describe the orientation of the rocket using the flight data.  The 3-D angle of the rocket 

from vertical that is equivalent to the 2-D angle, y  is calculated by finding the polar coordinates of the rocket’s z-

axis unit vector.  Once the X, Y, and Z values are determine for the z-axis unit vector from equations (7.1-6), then its 

polar coordinates can be found. 

 

Figure 8-3 Spherical & Cartesian Coordinates  
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To go from Cartesian to spherical coordinates 

 

 2 2r X Y   (7.1-7) 

 

 2 2 2 2 2R Z r X Y Z      (7.1-8) 

 

Then, the polar coordinates are 

 
2 2

2 2 2
arcsin arcsin

r X Y

R X Y Z


  

 
 (7.1-9) 

 
2 2

arcsin
Y

X Y
 


 (7.1-10) 

 

where   is the 3-D equivalent of the 2-D y .   
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9 Key Variables  

 

rA  cross-sectional area of the rocket 

1C  rotational forcing coefficient  

2C  rotational damping coefficient 

3C  X-axis forcing coefficient   

4C  rotational velocity damping coefficient 

1 'C  coupled forcing coefficient 

2 'C  coupled damping coefficient 

DC  drag coefficient 

LC   lift coefficient 

NC   normal force coefficient 

CP center of pressure 

CG center of gravity 

Xd  distance traveled along the ground frame X axis 

Xssd  distance the rocket travels along the X-axis due to the small side-to-side motion 

yd  distance the rocket travels along the X-axis from the projection of the y-axis rotational velocity to the 

center of pressure 

Zd  distance traveled along the ground frame Z axis 

DF  the drag force – X and Y subscripts are used to denote the drag force along the X and Z axes 

LF  the lift force – X and Y subscripts are used to denote the lift force along the X and Z axes 

NF  the normal force 

GF  the force due to gravity 

TF  the thrust force – X and Y subscripts are used to denote the thrust force along the X and Z axes 

g  acceleration due to gravity 

yG  rotational dynamics frequency domain gain function 

yK  dc gain of the linearized rotational dynamics frequency domain gain equation  

vXK  dc gain of the linearized X-axis frequency domain gain equation  

LI  longitudinal moment of inertia 

CPL  distance from the tip of the nosecone to the center of pressure 
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CGL  distance from the tip of the nosecone to the center of gravity 

mL  length of the motor 

neL  length from the tip of the nosecone to the base of the rocket 

om  mass of the rocket 

pm  mass of the propellant  

RM  the total rotational moment about the center of the object – for the rocket, this would be the tip of the 

nosecone 

1yM  rotational forcing moment 

2 yM  rotational damping moment 

2RM  rotational jet damping moment 

s   complex frequency s j    

t  time 

bt  burn time of the motor 

zXU  the X-axis component of the z-axis unit vector in 3-dimensional space  

zYU  the Y-axis component of the z-axis unit vector in 3-dimensional space 

ZzU  the z-axis component of the Z-axis unit vector in 3-dimensional space 

CGv  the velocity of the center of gravity of the rocket 

Tv  the velocity of the total oncoming airstream 

wv  the velocity of the wind along the X-axis 

Xv  the velocity of the rocket along the X-axis 

Zv  the velocity of the rocket along the Z-axis 

Xssv  the small sinusoidal component of XV due to coupling between the X-axis equation of motion and the 

rotational dynamics equation 

Zv  the velocity of the rocket along the Z-axis 

yv  the linear X-axis projection of the y-axis rotational velocity to the center of pressure 

, ,x y z  axes in the rocket frame of reference 

, ,X Y Z   axes in the inertial ground-based frame of reference 

at  angle of attack between the total oncoming airstream and the z-axis of the rocket 

T  angle from the Z-axis opposite the direction of the total oncoming airstream 

y  the angle indicating the total rotation about the y-axis axis.  In the 2-D model, this is also the angle of the 

rocket’s z axis measured from the Inertial Z axis as the y axis remains aligned with the Y axis 
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  angle between the direction of travel of the center of gravity of the rocket and the direction the rocket is 
pointed 

  3-D polar coordinate angle of rotation about the Z-axis 

   density of air 

T  angle from the Z-axis of the angle of the total oncoming airstream 

CG  angle between the Z-axis and the direction of the movement of the center of gravity of the rocket 

  3-D polar coordinate angle from vertical in 3-dimensional space 

, ,    Euler’s angles of rotation 

at  rotation rate of the angle attack due to the rotational velocity used to calculate the rotational damping 

moment 

n  natural frequency of a second order system 

'n  coupled natural frequency of a second order system 

y  rate of rotation of the rocket axis frame about the y axis 

  damping ratio of a second order system 

'  coupled damping ratio of a second order system 
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